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Abstract. We study orientational order, subject to thermal fluctuations, on a fixed curved surface.
We derive, in particular, the average density of zeros of Gaussian distributed vector fields on a closed
Riemannian manifold. Results are compared with the density of disclination charges obtained from
a Coulomb gas model. Our model describes the disordered state of two-dimensional objects with
orientational degrees of freedom, such as vector ordering in Langmuir monolayers and lipid bilayers
above the hexatic to fluid transition.

1. Introduction

In several areas of statistical physics and condensed matter, a great deal of progress has been
achieved by focusing on the physics of topological defects, ignoring other degrees of freedom.
The Kosterlitz–Thouless transition, describing the destruction of orientational order in thin
films, is a particularly important example. The transition is viewed as one where defect pairs
unbind and proliferate, destroying the (quasi-) long-range order [1]. Another crucial example
is that of type-II superconductors in a magnetic field, where the important physics is encoded
in the properties of vortex lines (for a recent review, see [2]). Even in the absence of a magnetic
field, the formation and growth of vortex loops can be used to explain the form of the voltage
versus current relation [3]. Yet a third example is found in the physics of orientational order
in membranes, where many workers [4–7] have found it fruitful to focus on the properties of
topological defects to understand the low-temperature physics.

In all of these examples, topological defects are used primarily to understand the low-
temperature behaviour. For example, in the case of superconductors, the vortex line description
is used primarily to understand the behaviour belowTc (orHc2), rather than to understand the
properties of the normal metal phase at higher temperatures. Indeed, topological defects are
a more natural description at low temperatures, where it is very costly to excite the order
parameter away from its average value. Although themselves energetically costly, topological
defects are the minimal-energy way of satisfying a constraint of the system, e.g., the curvature
of a membrane or the penetration of a magnetic field into a superconductor.

At higher temperatures, the description becomes less natural. Order parameter fluctuations
become much less costly, and hence the fluctuations observed in thermal equilibrium become
more violent. At sufficiently high temperatures, the broken symmetry associated with the low-
temperature phase is restored, and the average value of the order parameter is zero. Above
this temperature, the order parameter behaves approximately like a Gaussian random variable.
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Figure 1. A surfactant molecule tilted away from the normal.

In this case, it seems that the description in terms of topological defects will be insufficient
to describe the physics, as it only encodes the locations (and signs) of the zeros of the order
parameter, classifying as irrelevant any fluctuations that the order parameter undergoes between
these zeros.

Despite these objections, a description in terms of topological defects actually
approximates the high-temperature behaviour of such systems quite well. For the case of
thin films, Halperin [8] showed that the density of topological defects (i.e. zeros of the
order parameter) that one obtains from a Gaussian order parameter are much the same as
those from a Coulomb gas model that allows only the topological defects as degrees of
freedom. In the case of superconductors, Lehrer and Nelson [9] have shown that aboveHc2, a
Gaussian approximation to the Ginzburg–Landau free energy predicts approximately the same
distribution of vortex loops and lines as does the London theory, which is purely a description
in terms of topological defects.

In this paper, we focus on the case of membranes. In particular, we examine the
density of topological defects under the approximation that the free energy is Gaussian. This
approximation will be valid at high temperatures. We compare these results to those obtained
from a model which focusesonly on the topological defects and their interactions, namely, a
Debye–Ḧuckel approximation to a Coulomb gas model.

One way to probe the high-temperature properties of a topologically spherical surface is
with light scattering experiments on lipid vesicles [10]. In the case of lipid bilayers, the source
of the orientational order parameter is the vector between a lipid head and a neighbouring
head, and the order parameter describes the tendency of the lipids to achieve hexatic order at
low temperatures. (The hexatic order and the transition to the disordered phase were studied
in freestanding liquid-crystal films using light and x-ray scattering [11].) However, since this
order parameter is invariant under rotations by 60◦ (because most lipids have six neighbours
on average), it is slightly different from the case we consider, where the order parameter is
only invariant under rotation by integer multiples of 360◦. Nevertheless, we expect much of
what we derive here to apply to these systems.

A system that is closer to what we consider here is that of tilted Langmuir monolayers
(for a recent review, see [12]), which consist of a monolayer of lipids or amphiphiles on a
liquid surface, e.g. the surface of a water droplet. The surfactant molecules have a tendency to
orient themselves so that the hydrocarbon chain is tilted away from the normal to the surface.
The projection of the direction of the polymer chain onto the surface forms an orientational
order parameter which is exactly of the form that we consider in this paper, as illustrated
in figure 1. A similar situation may be obtained in a lipid bilayer when the lipids tend to tilt
away from the normal to the surface [13,14], providing yet another source for an orientational
order parameter.

The rest of the paper is organized as follows. In section 2, we write down a continuum
model for the orientational order parameter that has the correct symmetries and should describe
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both the low- and the high-temperature physics of the orientational order parameter, namely,
an O(2) Ginzburg–Landau theory in curved space. From this, we will derive a Coulomb
gas model, and use it to calculate the density of disclination defects in the Debye–Hückel
approximation in the high-temperature limit. We obtain

2πρ = K +
1

4π2KAx
1K + O(x−2) (1.1)

whereρ is the density of defects,K is the curvature of the surface,1 is the Laplace–Beltrami
operator,x is the fugacity of the topological defects, andKA describes the interaction strength
of the defects.

In section 3, we present the main results of our paper. We approximate our model by
neglecting the nonlinear terms, valid at high temperatures, and calculate the density of defects
for an arbitrarily curved surface. For simplicity, we restrict our scope to closed surfaces—
namely surfaces that are topologically equivalent to spheres, tori, etc. We especially focus
on the case where the surface is topologically equivalent to a sphere, both for calculational
ease and because we expect this class of (closed) surfaces to be the most easily amenable to
experiments. Because the calculation is fairly technical, we first review Halperin’s calculation
of the density of topological defects that we expect to see in flat space as a ‘toy model’ for the
problem in curved space. We then proceed to the calculation in curved space, obtaining

2πρ = K +
1K

12πZτ
+ O(τ−2) (1.2)

whereτ measures the deviation from the critical temperature,Z−1 = 2π/ log(1/(a2τ)), anda
is a short-distance cutoff. Instead of using a gauge-field representation of the orientational order
parameter we deal with a manifestly gauge-invariant picture. Employing a special symmetry
of the model we can express the director field through simple scalar fields and solve it exactly
in a high-temperature expansion.

The result for the defect density in curved space is equivalent to the Coulomb-gas/Debye–
Hückel result above, provided we identifyπKAx = 3Zτ . This confirms the validity of the
Coulomb model even for high temperatures at this level of approximation. Deviations do,
however, begin to show up at O(τ−2), as we shall show below.

2. Model and Debye–Ḧuckel theory

We concentrate on the case of purely in-plane orientational order and therefore use a (two-
component) tangential vector fieldui(σ ) as the order parameter. To describe the physics
of the surface, we rely on the language of Riemannian differential geometry, which ensures
that results are independent of any particular coordinate system. (A concise introduction
to differential geometry of surfaces can be found in [15].) The order parameter lives on a
closed two-dimensional Riemannian manifold with line element ds2 = gij dσ i dσ j , where
gij = gij (σ 1, σ 2) is the metric tensor andσ = (σ 1, σ 2) are internal coordinates of the surface.
Using this formalism, we write down an O(2)-invariant, statistical weightP [u] ∝ exp(−H/T )
for the ui-field, whereH is the (mesoscopic) Hamiltonian andT is the temperature. The
simplest such HamiltonianH is the analogue of Ginzburg–Landau theory in flat space, namely

H

T
= 1

2

∫
dA(DiujD

iuj + τuiu
i + c(uiu

i)2) (2.1)

where dA = √g(σ ) dσ 1 dσ 2 is the invariant area element,g is the determinant of the metric,
Di is the covariant gradient,ui = gijuj , gij = (g−1)ij , c is the coupling constant, and the
coupling constant for the gradient term is absorbed into the fieldui . Equation (2.1) encodes
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Figure 2. The planar vector field(ux, uy) = (x2−1, y)with
a negative zero (left) and a positive zero (right).

the same physics as the free energy used by Parket al [5] and by Evans [6] for vector defects,
although theirs appears in the gauge-field picture. The equivalence of the models is shown
explicitly in appendix C.

For τ below a certain criticalτ , this will be a ‘Mexican hat potential’; however, we will
be concerned primarily with the opposite case, that of high temperatures (τ � 0). Before
we specialize to this case, we look at some properties at smallerτ . A critical temperatureτc
(the mean field valueτc = 0 gets renormalized due to fluctuations) separates the disordered
stateτ > τc (high-temperature region) from the ‘ordered state’τ < τc. We put ‘ordered
state’ in quotation marks, because a perfectly ordered state is impossible for certain manifold
topologies. For example, on a sphere or any other surface with the same topology, a tangential
vector field has at least two zeros (defects) [15]. This can be illustrated by attempting to comb
a hedgehog or a hairy ball: there will be two places where the vector field is zero or has a
singularity.

To investigate this in more detail, we distinguish between two types of zeros. One
type, called a ‘positive zero’, is characterized by det(Diuj ) > 0, while the other type, a
‘negative zero’, has a saddle-like flow and is characterized by det(Diuj ) < 0. See figure 2
for an illustration of these types of defects. Zeros with det(Diuj ) = 0 do not fall into this
scheme; however, they will not show up in a statistical model as the probability to hit exactly
det(Diuj ) = 0 vanishes. The number of positive zeros minus the number of negative zeros is
a topological constraint and equal to 2(1−γ ), whereγ is the number of handles of the (closed)
surface, e.g. zero for a spherical topology and one for a torus [15]. We will show this theorem
explicitly en route to our calculation. Thus, on surfaces other than tori, the low-temperature
phase necessarily has defects, unlike in flat space, where the ground state is defect free.

As in flat space, the properties of the low-temperature phase are determined by low-energy
Goldstone modes (‘spin waves’), which prevent true long-ranged correlations. Instead, one
finds an algebraic decay of the correlations (quasi-long-ranged order). Besides the spin waves,
thermally excited defects persist. Integration over the spin waves results in a Coulomb gas
model for these defects (zeros) [7], where the defects carry a charge proportional to their index
q = sign det(Diuj ) and a core energy (chemical potential [16]). The interaction energy of the
defects reads

H

T
= KA

2

∫
dA

∫
dA′(2πρ −K)σG(σ, σ ′)(2πρ −K)σ ′ (2.2)

whereG(σ, σ ′) denotes the Green function of the negative of the Laplace–Beltrami operator
−1 = −gijDi∂j † andKA is the coarse-grained effective coupling between the defects and
therefore depends on the temperature [1, 17].ρ is the defect densityρ(σ) = ∑i qiδc(σ, σi),

† The Green function of the negative of the Laplace–Beltrami operator1 is the ‘electrostatic’ potential at the point
σ of a unit charge located at pointσ ′ and of a negative unit charge which is uniformly distributed over the surface to
ensure charge neutrality. It is given by−1G(σ, σ ′) = δc(σ, σ ′)− 1/A, whereδc is the covariant delta function and
A is the area of the surface.
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whereσi are the locations of the defects andδc is the covariant version of the Dirac delta
function given by

δc(σ, σ
′) = lim

λ→∞
λ

2π
exp

(
−λ

2
d2(σ, σ ′)

)
= δ2(σ − σ ′)/√g(σ )

(d(σ, σ ′) is the geodesic distance betweenσ andσ ′). We note that the Gaussian curvature
K = K(σ) plays the role of a background charge density. Because of this, positive defects
tend to concentrate in regions with positive curvature, whereas negative defects prefer saddle-
shaped regions with negative curvature. Charge neutrality and the Gauss–Bonnet theorem [15]
2π
∑

i qi −
∫

dAK = 0 yield the topological constraint
∑

i qi = 2(1− γ ).
Above a certain temperature it is expected [7] that the low-temperature phase with a

few tightly bound defects is destroyed through unbinding of defect pairs, analogous to the
Kosterlitz–Thouless transition in flat space. The high-temperature phase has a finite density
of thermally excited, unbound defects. The interaction between the defects is screened, with
a screening length of the order of the typical distance of the defects (Debye–Hückel length).
Above the transition temperature, we make a Gaussian approximation of the Coulomb gas
model (2.2) with acontinuousdefect densityρ

H

T
= KA

2

∫
dA

∫
dA′(2πρ −K)σG(σ, σ ′)(2πρ −K)σ ′ + 1

2x

∫
dAρ2 (2.3)

wherex is the fugacity of the charges. By settingδH/δρ = 0, we obtain for the mean charge
density

2πρ = 1

1− 1
4π2KAx

1
K = K +

1

4π2KAx
1K + O(x−2). (2.4)

Although this approximation accurately represents the Coulomb gas at high temperatures,
the use of the Coulomb gas at all to describe the high-temperature phase is rather suspect.
Nevertheless, we show that the Coulomb gas model yields a density of defects which agrees
remarkably well with the density obtained from (2.1) in the high-temperature phase on an
arbitrary curved surface.

3. Charge density in the high-temperature Gaussian approximation

In the remainder of the paper we present the calculation of the defect densityρ from (2.1) in
the disordered state, where the quartic term

∫
dA(uiui)2 is irrelevant and can be neglected.

We expect that similar to the situation in curved space–time [18], a term proportional to∫
dAKuiui is generated under renormalization, whereK = K(σ) is the Gaussian curvature.

SinceK has the dimension of 1/length2 this term is as relevant as the gradient term. Thus, in
the high-temperature phase the vector field is distributed according to the Gaussian weight

P [u] ∝ exp

(
− 1

2

∫
d2σ
√
g(DiujD

iuj + τui(σ )ui(σ ) + ηKuiui)

)
(3.1)

whereτ is now the mass of the vector field andη is the coupling ofK to uiui . In addition,
the distribution forui has to be equipped with a covariant cutoff procedure, such as the heat
kernel regularization [19]. Because the model depends only on the intrinsic geometry of the
manifold, no extrinsic couplings (such as a term proportional toC2uiu

i , whereC is the mean
curvature of the surface) can be generated under renormalization.
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The zeros of the fieldui are characterized by the indexq = sign det(Diuj ) = ±1.
The index (charge) describes the local topology of a flowui near a zeroui(σ ) = 0. The
corresponding mean charge density is given by

ρ(σ) =
〈∑

i

qiδc(σ, σi)

〉
(3.2)

where the defects are labelled by the indexi, located at coordinatesσi , and have chargesqi .
The expectation value is taken with respect to the probability distribution of (3.1).

Transforming from the variableσ to the variableu via the Jacobian, we obtain

ρ = 〈det(Diu
j (σ ))δc(u(σ ))〉 (3.3)

which can be seen easily using a locally Euclidean coordinate system and linearizing the vector
field around the zerouj (x1, x2) = xkαkj :∫

d2x det(∂i(xkαkj ))δ
2(xkαkj )

=
∫

d2x| det(αij )|sign det(αij )δ
2(xkαkj ) = sign det(αij ) = ±1. (3.4)

To calculate the expectation value (at pointσ ) ρ(σ) one needs the joint distribution
of ui(σ ) and Diuj (σ ) which can be determined sinceui(σ ) and Diuj (σ ) are a
set of (multicomponent) Gaussian random variables with correlations〈ui(σ )uj (σ )〉,
〈uk(σ )Diuj (σ )〉, 〈Diuj (σ )Dkul(σ )〉.

3.1. Density of defects in flat space

Before calculating results in curved space, we review Halperin’s calculation for the density
of zeros of a Gaussian two-component order parameteru in two-dimensional flat space [8].
Equation (3.1) becomes

P [u(r)] ∝ exp

{
− 1

2

∫
d2r[(∂iuj )

2 + τu2]

}
(3.5)

and (3.3) becomes

ρ(r) = 〈δ2[u(r)] det(∂iuj )〉. (3.6)

This expectation value is completely determined by the probability distributionP(ξi, αij ),
whereξi = ui(r) andαij = ∂iuj (r) via the formula

ρ(r) =
∫

d4αijP (0, αij ) detαij . (3.7)

Since (3.5) is Gaussian, this probability distribution is just given by

P(ξi, αij ) = 1

(2π)3
1

[detMij ]1/2
exp

{
−1

2
xiM

−1
ij xj

}
(3.8)

wherex is a six-component vector given byx = (ξ1, ξ2, α11, α12, α21, α22), andMij is the
matrix of correlationsMij = 〈xixj 〉. Plugging (3.8) into (3.7) gives

ρ = 1

2π

(
detM̃ij

detMij

)1/2

(M̃14− M̃23) (3.9)

whereM̃ is the matrix of correlationsMij = 〈yiyj 〉, andy is a four-component vector given
by (α11, α12, α21, α22).
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The expectation values necessary to evaluate (3.9) can be readily determined from (3.5).
The result is thatρ(r) = 0, as expected by symmetry: the system is uniform and charge-
neutral. In order to obtain a nontrivial result to compare with the Coulomb gas model, we must
calculate the correlation function of the density of charges, defined by

C(r) = 〈ρ(r)ρ(0)〉 = 〈δ2[u(r)] det[∂iuj (r)]δ
2[u(0)] det[∂iuj (0)]〉. (3.10)

This can be evaluated by similar methods, and the results match up very well with the Coulomb
gas model [8].

3.2. Density of defects in curved space

In the case of a general closed membrane,ρ will already be nontrivial for two reasons. First,
the system is not charge-neutral, but rather the total charge must be equal to 2 minus the
number of handles on the surface (e.g. 2 for a sphere, zero for a torus, etc). Second, unless the
surface has a high degree of symmetry, the charge will not distribute itself uniformly. Rather,
the charge density will depend upon the local curvature of the surface. Thus, for the case we
consider in the remainder of the paper, we can get a meaningful comparison with the Coulomb
gas theory solely from calculating the charge densityρ, rather than needing to calculate the
more complicated correlation functions.

The method used is conceptually the same as in section 3.1, but more technically
complicated due to the curvature of the space. Therefore, we present it in appendix A. The
analogous result to (3.9) for ageneralGaussian, O(2) invariant distribution for the vector field
ui is

2πρ −K = εikεjlDk

( 〈(Diuj )ul〉
〈umum〉

)
. (3.11)

Since the right-hand side of (3.11) is a total divergence, we find, after integration over the
surface the aforementioned topological constraint for the total charge of the defects

2π
∫

dAρ =
∫

dAK = 4π(1− γ ) (3.12)

which agrees with the Gauss–Bonnet theorem, as 1− γ is the genus of the surface.
To deriveρ from (3.11), we need to calculate〈uiuj 〉 and〈(Diuj )uk〉. This can be done

in an expansion with respect to the interaction range 1/τ using the Gaussian weight (3.1).
It is convenient to decompose the vector fieldui into a sum of a gradient and a curl,
ui = ∂iφ + εij ∂jχ . This representation is only valid for (deformed) spheres. For other
topologies, modes exist which cannot be written as a sum of a gradient and a curl. For
example, in a torus, a vector field that represents a flow along one of the perimeters cannot be
decomposed in this way.

A particularly simple case is given forη = 1 because the potentialsφ andχ decouple.
The special role of theη = 1 case can also be understood within the gauge-field representation,
as shown in appendix D. For this case, we derive the density of defects in a high-temperature
expansion. For high temperatures, the screening length is small compared with the radius of
curvature: the surface appears to be almost flat. Upon increasing screening length, more details
of the geometry become relevant. We present the details of this high-temperature expansion
in appendix B, obtaining as our main result the average defect densityρ:

2πρ = K +
1K

12Zπτ
+

12K

120Zπτ 2
− 1K2

30Zπτ 2
+ O(τ−3) (3.13)

whereZ−1 = 2π/ log(1/(a2τ)), anda is a short-distance cutoff.
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To lowest order in the correlation lengthτ−1/2, this is equivalent to the Debye–Hückel
approximation (2.4) provided one identifiesπKAx = 3Zτ . For larger correlation lengths,
however, deviations show up. The term∝ τ−1 will be independent of the couplingη
for dimensional reasons. The next orders, however, depend onη. We conjecture, that
expansion (3.13) remains valid for arbitrary genus of the surface. Treating general genus
andη, however, requires the calculation of moments of the vector fieldui directly, which is
much more complicated and beyond the scope of this work.

It will be difficult to observe the defect density (3.13) experimentally, sinceρ, which is
the density of positive defectsminusthe density of negative defects is of the order ofρ ∼ 1/A
due to the topological constraint (3.12). On the other hand, the density of positive defects plus
the density of negative defects is of the order of 1/ξ2 ∼ τ , whereξ is the correlation length,
which is small well above the transition temperature. In the high-temperature phase, therefore,
we have to measure a tiny density difference in the presence of a large background density.
Closer to the transition region the background density becomes smaller and there might well
be a chance to resolve the defects in thin films using polarized light. It would certainly be
interesting to see whether our expansion (3.13) or the result (2.4) obtained from the Coulomb
gas model allow for a better fit to the experimental data.

4. Conclusion

We have derived the average topological charge density of vector fields with a Gaussian
distribution on a curved surface. We found that for high temperatures, the zeros behave
like (screened) charges in the presence of a background charge density equal to the Gaussian
curvature. We demonstrated the validity of the Debye–Hückel approximation of the Coulomb
gas model, which, as discussed in section 1, is not obvious, since the Coulomb gas model
originates from a low-temperature model of the orientational order and we are attempting to
apply it in a high-temperature regime.
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Appendix A. Calculation of charge density

We will calculate the density of defectsρ = 〈det(Diu
j (σ ))δc(u(σ ))〉. We begin by exact

analogy with the calculation for flat space outlined in section 3.1, by noting that this expectation
value is completely determined by the probability distributionP(vi, Aij ), wherevi = ui(σ )
andAij = Diuj (σ ) via the formula

ρ(σ) =
∫

d4AijP (0, Aij ) detAi
j . (A.1)

Since (3.1) is Gaussian, this probability distribution is just given by

P(vi, Aij ) = 1

(2π)3
1

[detMij ]1/2
exp

{
−1

2
xi(M

−1)ij xj

}
(A.2)
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wherexi is a six-component vector given by(v1, v2, A11, A12, A21, A22), andMij is the matrix
of correlationsMij = 〈xixj 〉.

We can re-express this as

P(vi, Aij ) = 1

(2π)6

∫
d4Ãij

∫
d2ṽi exp

{
−1

2
x̃iMij x̃

j + ix̃ixi

}
(A.3)

where x̃i is a six-component vector given by(ṽ1, ṽ2, Ã11, Ã12, Ã21, Ã22). Performing the
integral over thẽxi returns us to (A.2). Explicitly, we have for the defect density

ρ = 1

(2π)6

∫
d4Ãijd4Aijd

2ṽid2vi exp

(
−1

2
Ãij Ãkl〈(Diuj )(Dkul)〉

)
× exp(−Ãij ṽk〈(Diuj )uk〉 − 1

2 ṽ
i ṽj 〈uiuj 〉 + iÃijAij + iṽivi)

× 1
2ε
ikεjlAijAklδc(v). (A.4)

The integration over thevi yields a factor of
√
g since

δc(v(σ )) = lim
λ→∞

λ

2π
exp

(
−λ

2
gij (σ )vivj

)
= √g(σ )δ2(v).

The resulting expression can be simplified by using the O(2)-invariance of the fieldui by
noting thatgij is the only rank-2 tensor invariant under O(2), and therefore

〈uiuj 〉 = 1
2gij 〈umum〉. (A.5)

After integration over thẽvi we obtain

ρ = 1

2π〈umum〉
1

(2π)4

∫
d4Ãijd4Aij exp

(
−1

2
Ãij ÃklTijkl + iÃijAij

)
εikεjlAijAkl (A.6)

where

Tijkl = 〈(Diuj )(Dkul)〉 − 2
〈(Diuj )um〉〈(Dkul)u

m〉
〈unun〉 . (A.7)

Integrating over theÃij in (A.6), we see that theAij are simply Gaussian variables with
correlations given by

〈AijAkl〉 = Tijkl . (A.8)

Therefore, (A.6) yields

ρ = εikεjlTijkl

2π〈umum〉 . (A.9)

To further simplify this equation, we derive

εikεjlDk

( 〈(Diuj )ul〉
〈umum〉

)
= εikεjl 〈(DkDiuj )ul〉

〈umum〉 + εikεjl
〈(Diuj )(Dkul)〉
〈umum〉

−2εikεjl
〈(Diuj )ul〉〈(Dkum)u

m〉
〈unun〉2

= −K + εikεjl
Tijkl

〈umum〉 (A.10)

using the fact that in two dimensions, the Riemann curvature tensor isRijkl = εij εklK, (where
K is the Gaussian curvature), and also that due to the O(2)-invariance ofui ,

〈(Diuj )uk〉 = 1
2gjk〈(Dium)u

m〉 + 1
2εjkε

mn〈(Dium)un〉. (A.11)

We therefore arrive at an expression for the mean defect density

2πρ −K = εikεjlDk

( 〈(Diuj )ul〉
〈umum〉

)
(A.12)

valid for any Gaussian, O(2)-invariant distribution for the vector fieldsui .
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Appendix B. High-temperature expansion

In this appendix, we derive the density of defects in a high-temperature expansion for the
caseη = 1, as discussed in section 3.2. In this case, sinceDiDi∂jφ − K∂jφ = ∂j1φ, the
eigenfunctions of the operator−DiD

i +K + τ (acting on vector fields)

(−DiDi +K + τ)uj,α = (λα + τ)uj,α (B.1)

can be written asu(1)i,α = ∂iφα andu(2)i,α = εij ∂jφα, whereφα is a normalized eigenfunction of the
Laplace–Beltrami operator−1φα = −gijDi∂jφα = λαφα. Together with the normalization
of theuα ∫

dAuj,αu
j,α =

∫
dAgij ∂iφα∂jφα = λα

we obtain the propagator forui

〈ui(σ )uj (σ ′)〉 = 〈∂iφ(σ )∂jφ(σ ′)〉 + εik(σ )εj l(σ ′)〈∂kφ(σ )∂lφ(σ ′)〉 (B.2)

in terms of thescalarpropagator

〈φ(σ)φ(σ ′)〉 =
′∑
α

exp(−a2λα)

λα(λα + τ)
φα(σ )φα(σ

′) (B.3)

where the zero modeφ ≡ const is omitted anda is an exponential cutoff length that arises
from the heat kernel regularization. After some algebra we find

2πρ −K = εikεjlDk

( 〈(Di∂jφ)∂lφ〉
〈∂mφ∂mφ〉

)
= 1

2
Dk

(
∂k〈φ1φ〉 − ∂k〈∂mφ∂mφ〉

〈∂nφ∂nφ〉
)

(B.4)

with 〈(1φ)∂iφ〉 = 1
2∂i〈(1φ)φ〉 from (B.3). Both−〈φ1φ〉 and〈∂mφ∂mφ〉 are logarithmically

divergent for small cutoff lengths

〈∂mφ∂mφ〉
−〈φ1φ〉

}
= 1

4π
log

(
1

a2τ

)
+ finite parts

where only the finite parts depend on the position on the manifold. Therefore the numerator
of (B.4) is finite, whereas in the limit of small cutoff lengths the divergent denominator can
be replaced by its most divergent (spatially constant) part. DefiningZ−1 = 2π/ log(1/(a2τ)),
we obtain

2πρ −K = Z−11(〈φ1φ〉 − 〈∂mφ∂mφ〉). (B.5)

Using〈∂mφ∂mφ〉 = 1
21〈φ2〉 − 〈φ1φ〉 andτ 〈φ2〉 = 〈φ1φ〉 + 〈φ(τ −1)φ〉, we obtain

2πρ −K = Z−1

(
1

(
2− 1

2τ
1

)
〈φ1φ〉 − 1

2τ
12〈φ(τ −1)φ〉

)
. (B.6)

The moment

〈φ(τ −1)φ〉 =
′∑
α

exp(−a2λα)

λα
φα(σ )

2

is the Green function of the Laplace–Beltrami operator at coinciding points, which can be
obtained from conformal field theory. With the definition of the massless propagator and its
short-distance behaviourG(σ, σ ′) ∼ 0(σ) − log(d(σ, σ ′))/(2π), we find for two conformal
equivalent metricesgij = ζ g̃ij that−10 + 2/A−K/(2π) = (−1̃0̃ + 2/Ã− K̃/(2π))/ζ and
consequently for a spherical topology−10 = K/(2π) − 2/A. A is the area of the surface
andd the geodesic distance. We have12〈φ(τ −1)φ〉 = −1K/(2π). The moment〈φ1φ〉



Orientational order on curved surfaces 1149

has to be calculated in an asymptotic 1/τ expansion. With the help of [19–21] we find for the
finite part of〈φ1φ〉

−〈φ1φ〉 = K

12πτ
+
K2 +1K

60πτ 2
+ O(τ−3). (B.7)

Finally, we obtain the average defect densityρ

2πρ = K +
1K

12Zπτ
+

12K

120Zπτ 2
− 1K2

30Zπτ 2
+ O(τ−3). (B.8)

Appendix C. The gauge-field representation

Orientational order is frequently represented as a gauge-field theory [5,6]. The vector fieldui
is represented in a local orthogonal base (reference frame)vi by a complex functionψ through
ui = viRe(ψ)+εij vj Im (ψ), wherevivi = 1 andε is the antisymmetric unit tensor. Plugging
this into (2.1), we obtain

H

T
=
∫

d2σ
√
g(gij (∂iψ

∗ + i�iψ
∗)(∂jψ − i�jψ) + τ |ψ |2 + c|ψ |4) (C.1)

with the vector potential�i = εjkvjDivk, resulting from the fact that the reference framevi
is changing from point to point. In this representation the Gaussian curvatureK plays the
role of a perpendicular magnetic fieldεijDi�j = K. Since any unit vector fieldvi must have
two points on a sphere where it is singular,�i will be singular at two points as well, even if
the underlying surface is not. We therefore use (2.1) rather than (C.1) in this paper as a base
for calculation. The disadvantage of (2.1) is that it is more difficult to generalize to ann-fold
symmetry, as is done by Parket al [7] and Evans [6].

Appendix D. Theη = 1 case

Equation (C.1) is covariant and gauge invariant, i.e. invariant against changes of the local
framevi . For convenience, we choose a conformally flat coordinate system with a metric
tensorgij = ζ(x, y)δij , where the coordinates areσ 1 ≡ x, σ 2 ≡ y andζ(x, y) encodes the
(intrinsic) geometry of the surface. A proof that such a coordinate system exists, as well as a
review of its properties, can be found in [15]. (Note, however, that for closed surfaces other
than tori,ζ will have singular points.) Furthermore, we choose a particular reference frame
vx =

√
ζ , vy = 0. Then

√
ggij = δij , �x = ∂yω, �y = −∂xω, K = (1/ζ )(∂2

x + ∂2
y )ω where

ω = − 1
2 logζ . The Gaussian weight (3.1) becomesP [ψ ] = exp(− 1

2

∫
d2xψ∗Hψ) with the

Hamilton operator

H = −(∂x − i∂yω)
2 − (∂y + i∂xω)

2 + η∇2ω + ζ τ. (D.1)

Forη = 1 and a vanishing massτ = 0 we can express the Hamilton operator in terms of the
square of a Dirac-type operator (σ̂x,y,z are the Pauli matrices)

H = −[(∂x − i∂yω)σ̂x + (∂y + i∂xω)σ̂y ]
2 = −(∂x − i∂yω)

2 − (∂y + i∂xω)
2 + σ̂z∇2ω (D.2)

in theσz = +1 sector. The latter operator is the Hamilonian of the 2D Pauli equation for spin-1
2

particles with the (dimensionless) magnetic momentg = 2 (electrons!) in a magnetic field
Bz = ∇2ω. Thus theη = 1 case that we focus on is closely related to both the Dirac equation
and the Pauli equation in two dimensions. The Dirac equation and its discretized counterpart
are commonly used to describe the properties of electrons confined to a plane in a quenched,
perpendicular magnetic field [22].



1150 G Foltin and R A Lehrer

References

[1] Kosterlitz J M and Thouless D J 1972J. Phys. C: Solid State Phys.5 L125–6
Kosterlitz J M and Thouless D J 1973J. Phys. C: Solid State Phys.6 1181–203

[2] Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994Rev. Mod. Phys.661125–388
[3] Langer J S and Fisher M E 1967Phys. Rev. Lett.19560–3

Huse D A, Fisher M P A andFisher D S 1992Nature358553
[4] Ovrut B A and Thomas S 1991Phys. Rev.D 431314–22
[5] Park J, Lubensky T C and MacKintosh F C 1992Europhys. Lett.20279–84
[6] Evans R M L1996Phys. Rev.E 53935–49
[7] Park J M and Lubensky T C 1996Phys. Rev.E 532648–64
[8] Halperin B I 1981Physics of Defectsed R Balianet al (New York: North-Holland) pp 813–57
[9] Lehrer R A and Nelson D R Vortex fluctuations aboveHc2, unpublished

[10] Sackmann E 1995Structure and Dynamics of Membranesvol 1A, ed R Lipowsky and E Sackmann (Amsterdam:
Elsevier) pp 213–304

[11] Brock J D, Aharony A, Birgeneau R J, Evans-Lutterodt K W, Litster J D, Horn P M and Stephenson G B 1986
Phys. Rev. Lett.5798–101

Spector M S and Litster J D 1995Phys. Rev.E 514698–703
[12] Kaganer V M, M̈ohwald H and Dutta P 1999Rev. Mod. Phys.71779–819
[13] de Gennes P G and Prost J 1993The Physics of Liquid Crystals2nd edn (New York: Oxford University Press)
[14] Chiang H-T, Chen-White V S, Pindak R and Seul M 1995J. Physique II5 835–57 and references therein
[15] David F 1989Statistical Mechanics of Membranes and Surfacesvol 5, ed D R Nelsonet al (Singapore: World

Scientific) pp 157-223
[16] Deem MW and Nelson D R 1996Phys. Rev.E 532551–9
[17] Nelson D R and Peliti L 1987J. Physique481085–92
[18] Buchbinder I L, Odintsov S D and Lichtzier I M 1989Theor. Math. Phys.79558–62

Odintsov S D 1991Fortschr. Phys.39621–41
Buchbinder I L, Odintsov S D and Shapiro I L 1992Effective Action in Quantum Gravity(Bristol: Institute of

Physics Publishing)
[19] Camporesi R 1990Phys. Rep.1961–134
[20] Berger M 1968Rev. Roum. Math. Pures Appl.7 915–31
[21] DeWitt B S 1975Phys. Rep.19295–357
[22] Fisher M P A andFradkin E 1985Nucl. Phys.B 251457–71

Ludwig A W W, Fisher M P A, Shankar R and Grinstein G 1994Phys. Rev.B 507526–52
Mudry C, Chamon C and Wen X G 1996Nucl. Phys.B 466383–443
Furusaki A 1999Phys. Rev. Lett.82604–7


