lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Orientational order on curved surfaces - the high temperature region

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33 1139
(http://iopscience.iop.org/0305-4470/33/6/304)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.124
The article was downloaded on 02/06/2010 at 08:46

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger83(2000) 1139-1150. Printed in the UK PIl: S0305-4470(00)06748-2

Orientational order on curved surfaces—the high temperature
region

Georg Foltint and Raphael A Lehrert

T Institut fur Theoretische Physik 1V, Heinrich-Heine-UnivedibDusseldorf,
Universi@atsstrasse 1, D-40225Bseldorf, Germany
¥ Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Received 9 August 1999, in final form 6 December 1999

Abstract. We study orientational order, subject to thermal fluctuations, on a fixed curved surface.
We derive, in particular, the average density of zeros of Gaussian distributed vector fields on a closed
Riemannian manifold. Results are compared with the density of disclination charges obtained from
a Coulomb gas model. Our model describes the disordered state of two-dimensional objects with
orientational degrees of freedom, such as vector ordering in Langmuir monolayers and lipid bilayers
above the hexatic to fluid transition.

1. Introduction

In several areas of statistical physics and condensed matter, a great deal of progress has been
achieved by focusing on the physics of topological defects, ignoring other degrees of freedom.
The Kosterlitz—Thouless transition, describing the destruction of orientational order in thin
films, is a particularly important example. The transition is viewed as one where defect pairs
unbind and proliferate, destroying the (quasi-) long-range order [1]. Another crucial example
is that of type-Il superconductors in a magnetic field, where the important physics is encoded
in the properties of vortex lines (for a recent review, see [2]). Even in the absence of a magnetic
field, the formation and growth of vortex loops can be used to explain the form of the voltage
versus current relation [3]. Yet a third example is found in the physics of orientational order
in membranes, where many workers [4—7] have found it fruitful to focus on the properties of
topological defects to understand the low-temperature physics.

In all of these examples, topological defects are used primarily to understand the low-
temperature behaviour. For example, in the case of superconductors, the vortex line description
is used primarily to understand the behaviour belgWor H.,), rather than to understand the
properties of the normal metal phase at higher temperatures. Indeed, topological defects are
a more natural description at low temperatures, where it is very costly to excite the order
parameter away from its average value. Although themselves energetically costly, topological
defects are the minimal-energy way of satisfying a constraint of the system, e.g., the curvature
of a membrane or the penetration of a magnetic field into a superconductor.

Athighertemperatures, the description becomes less natural. Order parameter fluctuations
become much less costly, and hence the fluctuations observed in thermal equilibrium become
more violent. At sufficiently high temperatures, the broken symmetry associated with the low-
temperature phase is restored, and the average value of the order parameter is zero. Above
this temperature, the order parameter behaves approximately like a Gaussian random variable.

0305-4470/00/061139+12$30.00 © 2000 IOP Publishing Ltd 1139
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vector order parameter Figure 1. A surfactant molecule tilted away from the normal.

In this case, it seems that the description in terms of topological defects will be insufficient
to describe the physics, as it only encodes the locations (and signs) of the zeros of the order
parameter, classifying as irrelevant any fluctuations that the order parameter undergoes between
these zeros.

Despite these objections, a description in terms of topological defects actually
approximates the high-temperature behaviour of such systems quite well. For the case of
thin films, Halperin [8] showed that the density of topological defects (i.e. zeros of the
order parameter) that one obtains from a Gaussian order parameter are much the same as
those from a Coulomb gas model that allows only the topological defects as degrees of
freedom. In the case of superconductors, Lehrer and Nelson [9] have shown thatiBhave
Gaussian approximation to the Ginzburg—Landau free energy predicts approximately the same
distribution of vortex loops and lines as does the London theory, which is purely a description
in terms of topological defects.

In this paper, we focus on the case of membranes. In particular, we examine the
density of topological defects under the approximation that the free energy is Gaussian. This
approximation will be valid at high temperatures. We compare these results to those obtained
from a model which focusesnly on the topological defects and their interactions, namely, a
Debye—Hickel approximation to a Coulomb gas model.

One way to probe the high-temperature properties of a topologically spherical surface is
with light scattering experiments on lipid vesicles [10]. In the case of lipid bilayers, the source
of the orientational order parameter is the vector between a lipid head and a neighbouring
head, and the order parameter describes the tendency of the lipids to achieve hexatic order at
low temperatures. (The hexatic order and the transition to the disordered phase were studied
in freestanding liquid-crystal films using light and x-ray scattering [11].) However, since this
order parameter is invariant under rotations by @ecause most lipids have six neighbours
on average), it is slightly different from the case we consider, where the order parameter is
only invariant under rotation by integer multiples of 36MWevertheless, we expect much of
what we derive here to apply to these systems.

A system that is closer to what we consider here is that of tilted Langmuir monolayers
(for a recent review, see [12]), which consist of a monolayer of lipids or amphiphiles on a
liquid surface, e.g. the surface of a water droplet. The surfactant molecules have a tendency to
orient themselves so that the hydrocarbon chain is tilted away from the normal to the surface.
The projection of the direction of the polymer chain onto the surface forms an orientational
order parameter which is exactly of the form that we consider in this paper, as illustrated
in figure 1. A similar situation may be obtained in a lipid bilayer when the lipids tend to tilt
away from the normal to the surface [13, 14], providing yet another source for an orientational
order parameter.

The rest of the paper is organized as follows. In section 2, we write down a continuum
model for the orientational order parameter that has the correct symmetries and should describe
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both the low- and the high-temperature physics of the orientational order parameter, namely,
an Q(2) Ginzburg—Landau theory in curved space. From this, we will derive a Coulomb
gas model, and use it to calculate the density of disclination defects in the DeligkeiH
approximation in the high-temperature limit. We obtain

1
27p=K+———AK +O(x"?) (1.1)
AX

An2K

wherep is the density of defects is the curvature of the surfaca,is the Laplace—Beltrami
operatory is the fugacity of the topological defects, akig describes the interaction strength
of the defects.

In section 3, we present the main results of our paper. We approximate our model by
neglecting the nonlinear terms, valid at high temperatures, and calculate the density of defects
for an arbitrarily curved surface. For simplicity, we restrict our scope to closed surfaces—
namely surfaces that are topologically equivalent to spheres, tori, etc. We especially focus
on the case where the surface is topologically equivalent to a sphere, both for calculational
ease and because we expect this class of (closed) surfaces to be the most easily amenable to
experiments. Because the calculation is fairly technical, we first review Halperin’s calculation
of the density of topological defects that we expect to see in flat space as a ‘toy model’ for the
problem in curved space. We then proceed to the calculation in curved space, obtaining

2np = K + +0(t7?) (1.2)

12777t
wherer measures the deviation from the critical temperatdre, = 27/ log(1/(a?t)), anda

is a short-distance cutoff. Instead of using a gauge-field representation of the orientational order
parameter we deal with a manifestly gauge-invariant picture. Employing a special symmetry

of the model we can express the director field through simple scalar fields and solve it exactly

in a high-temperature expansion.

The result for the defect density in curved space is equivalent to the Coulomb-gas/Debye—
Huckel result above, provided we identiiykax = 3Zz. This confirms the validity of the
Coulomb model even for high temperatures at this level of approximation. Deviations do,
however, begin to show up at(@2), as we shall show below.

2. Model and Debye—Hickel theory

We concentrate on the case of purely in-plane orientational order and therefore use a (two-
component) tangential vector field (o) as the order parameter. To describe the physics

of the surface, we rely on the language of Riemannian differential geometry, which ensures
that results are independent of any particular coordinate system. (A concise introduction
to differential geometry of surfaces can be found in [15].) The order parameter lives on a
closed two-dimensional Riemannian manifold with line elemenit ¢ 8ij doi do/, where

gi; = gij (01, o?) is the metric tensor andl = (o1, 02) are internal coordinates of the surface.
Using this formalism, we write down an(@)-invariant, statistical weigh®[u] oc exp(—H/T)

for the u;-field, whereH is the (mesoscopic) Hamiltonian afdis the temperature. The
simplest such HamiltoniaH is the analogue of Ginzburg—Landau theory in flat space, namely

H oo . )

7= %/dA(DiujD’uJ +tuu’ + c(u;u')?) (2.1)
where A = . /g(0) do!do? is the invariant area elementjs the determinant of the metric,
D; is the covariant gradienty = g'u;, g/ = (g71),;, c is the coupling constant, and the
coupling constant for the gradient term is absorbed into the fieldEquation (2.1) encodes
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the same physics as the free energy used by &al{5] and by Evans [6] for vector defects,
although theirs appears in the gauge-field picture. The equivalence of the models is shown
explicitly in appendix C.

For ¢ below a certain criticat, this will be a ‘Mexican hat potential’; however, we will
be concerned primarily with the opposite case, that of high temperaturgs Q). Before
we specialize to this case, we look at some properties at small&rcritical temperature,

(the mean field value. = 0 gets renormalized due to fluctuations) separates the disordered
statetr > t. (high-temperature region) from the ‘ordered state< z.. We put ‘ordered

state’ in quotation marks, because a perfectly ordered state is impossible for certain manifold
topologies. For example, on a sphere or any other surface with the same topology, a tangential
vector field has at least two zeros (defects) [15]. This can be illustrated by attempting to comb
a hedgehog or a hairy ball: there will be two places where the vector field is zero or has a
singularity.

To investigate this in more detail, we distinguish between two types of zeros. One
type, called a ‘positive zero’, is characterized by (dgi;) > 0, while the other type, a
‘negative zero’, has a saddle-like flow and is characterized byfde}) < 0. See figure 2
for an illustration of these types of defects. Zeros with(fkei;) = 0 do not fall into this
scheme; however, they will not show up in a statistical model as the probability to hit exactly
det(D;u ;) = 0 vanishes. The number of positive zeros minus the number of negative zeros is
atopological constraint and equal t12- y), wherey is the number of handles of the (closed)
surface, e.g. zero for a spherical topology and one for a torus [15]. We will show this theorem
explicitly en route to our calculation. Thus, on surfaces other than tori, the low-temperature
phase necessarily has defects, unlike in flat space, where the ground state is defect free.

As in flat space, the properties of the low-temperature phase are determined by low-energy
Goldstone modes (‘spin waves’), which prevent true long-ranged correlations. Instead, one
finds an algebraic decay of the correlations (quasi-long-ranged order). Besides the spin waves,
thermally excited defects persist. Integration over the spin waves results in a Coulomb gas
model for these defects (zeros) [7], where the defects carry a charge proportional to their index
g = signdetD;u;) and a core energy (chemical potential [16]). The interaction energy of the
defects reads

Ll = % / dA/dA/(er,o — K);G(0,06")2rp — K)y (2.2)

T
whereG (o, ') denotes the Green function of the negative of the Laplace—Beltrami operator
—A = —g"D;d; T andK, is the coarse-grained effective coupling between the defects and
therefore depends on the temperature [1, 7is the defect density(c) = >, ¢;6c(o, 0;),

t The Green function of the negative of the Laplace—Beltrami operaierthe ‘electrostatic’ potential at the point

o of a unit charge located at poiat and of a negative unit charge which is uniformly distributed over the surface to
ensure charge neutrality. It is given BYAG (o, 0’) = 8c(0, ') — 1/ A, whered. is the covariant delta function and

A is the area of the surface.
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whereo; are the locations of the defects afidis the covariant version of the Dirac delta
function given by

belo, ') = lim - exp(—%d%, a/)) = 520 — 0')//2(0)

(d(o, 0’) is the geodesic distance betweerandos’). We note that the Gaussian curvature

K = K (o) plays the role of a background charge density. Because of this, positive defects
tend to concentrate in regions with positive curvature, whereas negative defects prefer saddle-
shaped regions with negative curvature. Charge neutrality and the Gauss—Bonnet theorem [15]
27 Y., qi — [ dAK = 0yield the topological constraiiX; ¢; = 2(1 — y).

Above a certain temperature it is expected [7] that the low-temperature phase with a
few tightly bound defects is destroyed through unbinding of defect pairs, analogous to the
Kosterlitz—Thouless transition in flat space. The high-temperature phase has a finite density
of thermally excited, unbound defects. The interaction between the defects is screened, with
a screening length of the order of the typical distance of the defects (DebigkeHength).

Above the transition temperature, we make a Gaussian approximation of the Coulomb gas
model (2.2) with acontinuousdefect density

7 _ % / dA / dA’'27p — K),G(o,0)(2np — K)o + % / dAp? (2.3)

T
wherex is the fugacity of the charges. By settififf /5p = 0, we obtain for the mean charge
density

1
tp= — K=K+
p 1— L A 472K px

- 47'[2KAJC

AK +0O(x7?). (2.4)

Although this approximation accurately represents the Coulomb gas at high temperatures,
the use of the Coulomb gas at all to describe the high-temperature phase is rather suspect.
Nevertheless, we show that the Coulomb gas model yields a density of defects which agrees
remarkably well with the density obtained from (2.1) in the high-temperature phase on an
arbitrary curved surface.

3. Charge density in the high-temperature Gaussian approximation

In the remainder of the paper we present the calculation of the defect derisity (2.1) in

the disordered state, where the quartic tgfoh (u;u’)? is irrelevant and can be neglected.
We expect that similar to the situation in curved space—time [18], a term proportional to
i dAKu;u' is generated under renormalization, wh&re= K (o) is the Gaussian curvature.
Sincek has the dimension of/lengtif this term is as relevant as the gradient term. Thus, in
the high-temperature phase the vector field is distributed according to the Gaussian weight

Plu] exp< - %/dzaﬁ(DiujDiuj +tul (o)u;(o) + r;Kuiui)) (3.1

wheret is now the mass of the vector field ands the coupling ofK to u;u'. In addition,

the distribution fors; has to be equipped with a covariant cutoff procedure, such as the heat
kernel regularization [19]. Because the model depends only on the intrinsic geometry of the
manifold, no extrinsic couplings (such as a term proportion&lde,;u’, whereC is the mean
curvature of the surface) can be generated under renormalization.
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The zeros of the field;; are characterized by the indgx = signdetD;u;) = +1.
The index (charge) describes the local topology of a flgwear a zera;(6) = 0. The
corresponding mean charge density is given by

plo) = <Zqiac<o, o,->> (3:2)

where the defects are labelled by the indebocated at coordinates, and have charges.
The expectation value is taken with respect to the probability distribution of (3.1).
Transforming from the variable to the variable: via the Jacobian, we obtain

p = (det(Diu’ (9))8c(u(0))) (3.3)
which can be seen easily using a locally Euclidean coordinate system and linearizing the vector
field around the zerg; (x1, x2) = xpay;:

/dzx det(d; (xpaij)) 8% (xears;)

= /d2x| det(e;;)|sign deta;;)8% (xia;) = sign deta;;) = +1. (3.4)

To calculate the expectation value (at pom} p(c) one needs the joint distribution
of u;(0) and D;u;j(c) which can be determined since;(¢) and D;u;(c) are a
set of (multicomponent) Gaussian random variables with correlationéo)u; (o)),
(up(o)Diuj(o)), (Diuj(o)Dyu(0)).

3.1. Density of defects in flat space

Before calculating results in curved space, we review Halperin's calculation for the density
of zeros of a Gaussian two-component order parametartwo-dimensional flat space [8].
Equation (3.1) becomes

Plu(r)] « exp{ — %/dzr[(a,»uj)z + ruz]} (3.5)
and (3.3) becomes
p(r) = (8[u(r)] det(@u ). (3.6)

This expectation value is completely determined by the probability distribétign «;;),
where§; = u;(r) ande;; = 9;u;(r) via the formula

p(r) = /d40l,'jP(0, Ol,'j) deta,j. (37)

Since (3.5) is Gaussian, this probability distribution is just given by

1 1 1 1
P(gi, Oll'j) = (27_[)3 [detM,-j]l/? eXp{—E)C,'Mij )CJ'} (38)

wherex is a six-component vector given by = (&1, &, a11, a12, 021, ar22), and M;; is the
matrix of correlationsVf;; = (x;x;). Plugging (3.8) into (3.7) gives

1 (detM,'j

1/2
= — My — M 3.9
p= detMij> (M4 23) (3.9)

whereM is the matrix of correlationdf;; = (y;y,), andy is a four-component vector given
by (011, 012, €021, @22).
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The expectation values necessary to evaluate (3.9) can be readily determined from (3.5).
The result is thap(r) = 0, as expected by symmetry: the system is uniform and charge-
neutral. In order to obtain a nontrivial result to compare with the Coulomb gas model, we must
calculate the correlation function of the density of charges, defined by

C(r) = (p(r)p(0)) = (8*[u(r)] det[d;u;(r)]8*[u(0)] det[du,; (0)]).  (3.10)

This can be evaluated by similar methods, and the results match up very well with the Coulomb
gas model [8].

3.2. Density of defects in curved space

In the case of a general closed membranwill already be nontrivial for two reasons. First,

the system is not charge-neutral, but rather the total charge must be equal to 2 minus the
number of handles on the surface (e.g. 2 for a sphere, zero for a torus, etc). Second, unless the
surface has a high degree of symmetry, the charge will not distribute itself uniformly. Rather,
the charge density will depend upon the local curvature of the surface. Thus, for the case we
consider in the remainder of the paper, we can get a meaningful comparison with the Coulomb
gas theory solely from calculating the charge dengityather than needing to calculate the

more complicated correlation functions.

The method used is conceptually the same as in section 3.1, but more technically
complicated due to the curvature of the space. Therefore, we present it in appendix A. The
analogous result to (3.9) forgeneralGaussian, @) invariant distribution for the vector field
u; Is

(3.11)

o Diu;
27Tp - K = 61k6]le (—(( M])Ml)> .

(Wpu™)

Since the right-hand side of (3.11) is a total divergence, we find, after integration over the
surface the aforementioned topological constraint for the total charge of the defects

27T/dA,0 = /dAK =4dn(l—vy) (3.12)

which agrees with the Gauss—Bonnet theorem, -ag/lis the genus of the surface.

To derivep from (3.11), we need to calculate;u ;) and ((D;u;)ux). This can be done
in an expansion with respect to the interaction range dsing the Gaussian weight (3.1).
It is convenient to decompose the vector fieidinto a sum of a gradient and a curl,
ui = 9 +¢€73;x. This representation is only valid for (deformed) spheres. For other
topologies, modes exist which cannot be written as a sum of a gradient and a curl. For
example, in a torus, a vector field that represents a flow along one of the perimeters cannot be
decomposed in this way.

A patrticularly simple case is given far = 1 because the potentiajsand y decouple.
The special role of the = 1 case can also be understood within the gauge-field representation,
as shown in appendix D. For this case, we derive the density of defects in a high-temperature
expansion. For high temperatures, the screening length is small compared with the radius of
curvature: the surface appears to be almost flat. Upon increasing screening length, more details
of the geometry become relevant. We present the details of this high-temperature expansion
in appendix B, obtaining as our main result the average defect density

L_AK A%K AK?
12Zrnt  120Zmt2 30Znt?
whereZ~! = 27 /log(1/(a?1)), anda is a short-distance cutoff.

27p = K +0(t %) (3.13)
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To lowest order in the correlation lengttt¥/2, this is equivalent to the Debye-idkel
approximation (2.4) provided one identifiekax = 3Zt. For larger correlation lengths,
however, deviations show up. The temn =1 will be independent of the coupling
for dimensional reasons. The next orders, however, depengl. ollVe conjecture, that
expansion (3.13) remains valid for arbitrary genus of the surface. Treating general genus
andn, however, requires the calculation of moments of the vector figldirectly, which is
much more complicated and beyond the scope of this work.

It will be difficult to observe the defect density (3.13) experimentally, sincevhich is
the density of positive defectsinusthe density of negative defects is of the ordepof 1/A
due to the topological constraint (3.12). On the other hand, the density of positive defects plus
the density of negative defects is of the order p§24~ t, wheret is the correlation length,
which is small well above the transition temperature. Inthe high-temperature phase, therefore,
we have to measure a tiny density difference in the presence of a large background density.
Closer to the transition region the background density becomes smaller and there might well
be a chance to resolve the defects in thin films using polarized light. It would certainly be
interesting to see whether our expansion (3.13) or the result (2.4) obtained from the Coulomb
gas model allow for a better fit to the experimental data.

4. Conclusion

We have derived the average topological charge density of vector fields with a Gaussian
distribution on a curved surface. We found that for high temperatures, the zeros behave
like (screened) charges in the presence of a background charge density equal to the Gaussian
curvature. We demonstrated the validity of the Debygéekél approximation of the Coulomb

gas model, which, as discussed in section 1, is not obvious, since the Coulomb gas model
originates from a low-temperature model of the orientational order and we are attempting to
apply it in a high-temperature regime.

Acknowledgments

We have benefited from discussionsiwiit R Nelson ad B | Halperin. GF was supported by the
Deutsche Forschungsgemeinschaftthrough Grant Fo 259/1 and acknowledges the hospitality of
the Condensed Matter Theory group at Harvard University, where some of this work was done.
RAL was supported primarily by the Harvard Materials Research Science and Engineering
Laboratory through Grant No DMR94-00396, by the National Science Foundation through
Grant No DMR97-14725, and by the Office of Naval Research.

Appendix A. Calculation of charge density

We will calculate the density of defects = (det(D;u’(0))8:(u(c))). We begin by exact
analogy with the calculation for flat space outlined in section 3.1, by noting that this expectation
value is completely determined by the probability distribut®¢;, A;;), wherev; = u; (o)
andA;; = Dju (o) via the formula

p(o) = /d“A,-jP(O, A;j) detA;”. (A.1)
Since (3.1) is Gaussian, this probability distribution is just given by

! exp{—%xi (Ml)"ij} (A.2)

P(v;, Ajj) = (27)3 [detM[j]l/z
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wherex; is a six--component vector given Ioy1, vo, A11, A1, A21, A22), andM;; is the matrix
of correlationsM;; = (x;x;).
We can re-express this as

1 o . 1., . )
P(v;, Aij) = W/d4Al] /dzf)l exp{—éi’M,-jif +iilx,'} (AS)

where i’ is a six-component vector given hyl, 92, Al A12 A2 A22). Performing the
integral over thet’ returns us to (A.2). Explicitly, we have for the defect density

1-.. .
/d4 AVd*A;; 025 dPv; exp( 2A” Akl((Diuj)(Dkul))>
x exp(—AY T ((Dyuug) — 3507 (uiu ;) +1AY Ay +iv'v;)
x2e* el Aj; Ande(v). (A.4)
The integration over the; yields a factor of,/g since

. A Ao
8e(v(@)) = lim —exp(—zg'f(a)vivj> = /8(0)5%(v).

P= 2n)s

o 271
The resulting expression can be simplified by using thig)anvariance of the field:; by
noting thatg;; is the only rank-2 tensor invariant unde¢2y, and therefore

(win;) = Lgij(umu™). (A.5)
After integration over thé' we obtain
1 1.
P = 27'[(1,1—1,{'" (27[)4 /d4 l]d4A exp(—é lekl jkl + |AJA )Elkéj A,jAk[ (A 6)
where

((Djuj)um)((Drup)u™)

(unu™) '
Integrating over thedi/ in (A.6), we see that thet;; are simply Gaussian variables with
correlations given by

Tijr = ((Djuj)(Drup)) — 2 (A7)

(AijAr) = Tiju. (A.8)
Therefore, (A.6) yields
e* el Ty
- A.9
L S — (A.9)

To further simplify this equation, we derive
¢kl D, (((Diuj)”l>) _ ikl ((DyDjuj)uy) ikl ((Dju;)(Dguy))
(upu™) (U u™) (upu™)
(Djuj)ur) {(Drity)u™)

—2¢ikeld! (
(unun)Z

_ g ikt _Tim (A.10)
(Umu™)

using the fact that in two dimensions, the Riemann curvature ten®o#is= €;;eu K, (where
K is the Gaussian curvature), and also that due to {t®-Dvariance ofy;,

((Djujyur) = 32x ((Diwy)u™) + 5€5€™ ((Dytt)it). (A.11)
We therefore arrive at an expression for the mean defect density
((Diuj)up)
o)
valid for any Gaussian, @)-invariant distribution for the vector fields .

27p — K = e'*el' Dy ( (A.12)
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Appendix B. High-temperature expansion
In this appendix, we derive the density of defects in a high-temperature expansion for the

casen = 1, as discussed in section 3.2. In this case, sicB;0;¢ — Kd;¢ = 3;A¢, the
eigenfunctions of the operaterD; D' + K + t (acting on vector fields)

(=D'Di+K+0)ujq = (hg + Tt o (B.1)
can be written asfl(j = 0P andugfj = €/ 0;¢4, Wherep, is anormalized eigenfunction of the
Laplace—Beltrami operator A, = —g" D;0;¢o = L. Together with the normalization
of theu,

/dALtj’an’a = /dAgi'iai¢a8j¢a = Ao
we obtain the propagator fag

(ui(o)u;(0")) = (3:¢(0)3;0 (") + € (0)e;' (6/) (3 (0)dp () (B.2)
in terms of thescalar propagator

/

CIQLICHIEDY

o

where the zero modg¢ = const is omitted and is an exponential cutoff length that arises
from the heat kernel regularization. After some algebra we find

((Diaj¢)al¢>> _ 1 <8k<¢A¢> - 8k(am¢3'n¢>)
(Omp0™ ) 2 (0np0" @)
with ((A¢)d;¢) = %ai((A¢)¢) from (B.3). Both— (¢ A¢) and(9,,¢ 9™ ¢) are logarithmically
divergent for small cutoff lengths

(O™ ) 1 1 L

—(6A®) } = log <E + finite parts
where only the finite parts depend on the position on the manifold. Therefore the numerator
of (B.4) is finite, whereas in the limit of small cutoff lengths the divergent denominator can

be replaced by its most divergent (spatially constant) part. Defifiitg= 2/ log(1/(a?7)),
we obtain

exp(—a®iy)

o $a(@)u() (B.3)

27p — K = e'*el' Dy ( (B.4)

27p — K = Z ' A((pA@) — (03" ). (B.5)
Using (3,,¢9"¢) = 3A(¢%) — (pA¢) andt (p?) = (pAg) + (¢(t — A)¢), we obtain

2mp—K =271 <A (2 — iA) (pAP) — iA2<¢(r — A)qb)) ) (B.6)
2T 2t

The moment

L exp(—a®iy)
(¢ — M)g) = Z »

is the Green function of the Laplace—Beltrami operator at coinciding points, which can be
obtained from conformal field theory. With the definition of the massless propagator and its
short-distance behaviod¥ (o, 6’) ~ I'(o) — log(d (o, '))/(27), we find for two conformal
equivalent metrices;; = ¢ &, that—AT +2/A — K /(27) = (~AT +2/A — K /(2n))/¢ and
consequently for a spherical topologpAT = K /(2r) — 2/A. A is the area of the surface
andd the geodesic distance. We haté(¢ (t — A)¢) = —AK/(2r). The moment{pA¢p)

b (0)?
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has to be calculated in an asymptotja Expansion. With the help of [19-21] we find for the
finite part of (¢ A¢)

K K2+ AK

p— — -3 .
(pAP) - + 60 72 +0(t7). (B.7)
Finally, we obtain the average defect dengity
AK A%K AK?
27p = K +0(t79). (B.8)

+ + —
12Zrt 120Znt2 30Znt?

Appendix C. The gauge-field representation

Orientational order is frequently represented as a gauge-field theory [5, 6]. The vectoy field
is represented in a local orthogonal base (reference franhg)a complex function through

u; = v;Re(y)+e;/v;Im (y), wherev; v’ = 1 ande is the antisymmetric unit tensor. Plugging
this into (2.1), we obtain

H . . .
T =/dZU\/E(g”(BM/f*+l§2i1//*)(8_f1/f —iQ) +elyP+clylh  (CL)

with the vector potentia®2, = ef"vj D; vy, resulting from the fact that the reference frame

is changing from point to point. In this representation the Gaussian curvAtyrays the

role of a perpendicular magnetic fiedd D;2; = K. Since any unit vector field; must have

two points on a sphere where it is singul@y, will be singular at two points as well, even if

the underlying surface is not. We therefore use (2.1) rather than (C.1) in this paper as a base
for calculation. The disadvantage of (2.1) is that it is more difficult to generalize tefalu
symmetry, as is done by Pagkal [7] and Evans [6].

Appendix D. Then = 1 case

Equation (C.1) is covariant and gauge invariant, i.e. invariant against changes of the local
framev;. For convenience, we choose a conformally flat coordinate system with a metric
tensorg;; = ¢(x, y)8;;, where the coordinates ase¢ = x, 02 = y and¢(x, y) encodes the
(intrinsic) geometry of the surface. A proof that such a coordinate system exists, as well as a
review of its properties, can be found in [15]. (Note, however, that for closed surfaces other
than tori,¢ will have singular points.) Furthermore, we choose a particular reference frame
v = /2, v, = 0. Then/gg" = 8;;, @ = d,0, Qy = =80, K = (1/0)(32 + 82w where

w = —3log¢. The Gaussian weight (3.1) becom@p)] = exp(—3 [ d®xy*Hy) with the
Hamilton operator

H=—(, —id,w)? — (3, +id,0)? +nVZw + 1. (D.1)

Forn = 1 and a vanishing mass= 0 we can express the Hamilton operator in terms of the
square of a Dirac-type operatdr,(, . are the Pauli matrices)

H = —[@, —id,0)5, + (3, +18,0)5,]* = —(3, — id,w)* — (8, +id,w)* +5,V?0  (D.2)

intheo, = +1 sector. The latter operator is the Hamilonian of the 2D Pauli equation for%spin-
particles with the (dimensionless) magnetic moment 2 (electrons!) in a magnetic field

B. = V?w. Thus they = 1 case that we focus on is closely related to both the Dirac equation
and the Pauli equation in two dimensions. The Dirac equation and its discretized counterpart
are commonly used to describe the properties of electrons confined to a plane in a quenched,
perpendicular magnetic field [22].
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